1 /* 2 Copyright (c) 2011-2021 Timur Gafarov, Oleg Baharev 3 4 Boost Software License - Version 1.0 - August 17th, 2003 5 6 Permission is hereby granted, free of charge, to any person or organization 7 obtaining a copy of the software and accompanying documentation covered by 8 this license (the "Software") to use, reproduce, display, distribute, 9 execute, and transmit the Software, and to prepare derivative works of the 10 Software, and to permit third-parties to whom the Software is furnished to 11 do so, all subject to the following: 12 13 The copyright notices in the Software and this entire statement, including 14 the above license grant, this restriction and the following disclaimer, 15 must be included in all copies of the Software, in whole or in part, and 16 all derivative works of the Software, unless such copies or derivative 17 works are solely in the form of machine-executable object code generated by 18 a source language processor. 19 20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT 23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE 24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, 25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 DEALINGS IN THE SOFTWARE. 27 */ 28 29 /** 30 * Detect edges on an image 31 * 32 * Copyright: Timur Gafarov 2011-2021. 33 * License: $(LINK2 boost.org/LICENSE_1_0.txt, Boost License 1.0). 34 * Authors: Timur Gafarov 35 */ 36 module dlib.image.filters.edgedetect; 37 38 import std.math; 39 import dlib.math.vector; 40 import dlib.image.image; 41 import dlib.image.color; 42 import dlib.image.arithmetics; 43 import dlib.image.filters.contrast; 44 import dlib.image.filters.boxblur; 45 import dlib.image.filters.morphology; 46 import dlib.image.filters.convolution; 47 48 /// Difference of Gaussians 49 SuperImage edgeDetectDoG(SuperImage src, SuperImage outp, int radius1, int radius2, float amount, bool inv = true) 50 { 51 if (outp is null) 52 outp = src.dup; 53 54 auto blurred1 = boxBlur(src, outp, radius1); 55 SuperImage outp2 = outp.dup; 56 auto blurred2 = boxBlur(src, outp2, radius2); 57 58 auto mask = subtract(blurred1, blurred2, outp, 1.0f); 59 outp2.free(); 60 auto highcon = contrast(mask, mask, amount, ContrastMethod.AverageImage); 61 62 if (inv) 63 return invert(highcon, highcon); 64 else 65 return highcon; 66 } 67 68 /// ditto 69 SuperImage edgeDetectDoG(SuperImage src, int radius1, int radius2, float amount, bool inv = true) 70 { 71 return edgeDetectDoG(src, null, radius1, radius2, amount, inv); 72 } 73 74 /// Morphologic edge detection 75 SuperImage edgeDetectGradient(SuperImage src, SuperImage outp) 76 { 77 if (outp is null) 78 outp = src.dup; 79 80 return gradient(src, outp); 81 } 82 83 /// ditto 84 SuperImage edgeDetectGradient(SuperImage src) 85 { 86 return edgeDetectGradient(src, null); 87 } 88 89 /// Laplace edge detection 90 SuperImage edgeDetectLaplace(SuperImage src, SuperImage outp) 91 { 92 if (outp is null) 93 outp = src.dup; 94 95 return convolve(src, outp, Kernel.Laplace, 3, 3, 1.0f, 0.0f, false); 96 } 97 98 /// ditto 99 SuperImage edgeDetectLaplace(SuperImage src) 100 { 101 return edgeDetectLaplace(src, null); 102 } 103 104 /// Sobel edge detection 105 SuperImage edgeDetectSobel(SuperImage src, SuperImage outp, float normFactor = 1.0f / 8.0f) 106 { 107 if (outp is null) 108 outp = src.dup; 109 110 enum float[3][3] sobelHorizontal = [ 111 [-1, 0, 1], 112 [-2, 0, 2], 113 [-1, 0, 1], 114 ]; 115 116 enum float[3][3] sobelVertical = [ 117 [-1, -2, -1], 118 [ 0, 0, 0], 119 [ 1, 2, 1], 120 ]; 121 122 foreach(window, x, y; src.windows(3, 3)) 123 { 124 Color4f hor = Color4f(0, 0, 0); 125 Color4f ver = Color4f(0, 0, 0); 126 foreach(ref Color4f pixel, x, y; window) 127 { 128 hor += pixel * sobelHorizontal[y][x]; 129 ver += pixel * sobelVertical[y][x]; 130 } 131 132 float magnitude = sqrt(hor.xyz.lengthsqr + ver.xyz.lengthsqr) * normFactor; 133 Color4f res = Color4f(magnitude, magnitude, magnitude, 1.0f); 134 res.a = 1.0f; 135 outp[x, y] = res; 136 } 137 138 return outp; 139 } 140 141 /// ditto 142 SuperImage edgeDetectSobel(SuperImage src, float normFactor = 1.0f / 8.0f) 143 { 144 return edgeDetectSobel(src, null, normFactor); 145 }