1 /*
2 Copyright (c) 2013-2021 Timur Gafarov
3 
4 Boost Software License - Version 1.0 - August 17th, 2003
5 
6 Permission is hereby granted, free of charge, to any person or organization
7 obtaining a copy of the software and accompanying documentation covered by
8 this license (the "Software") to use, reproduce, display, distribute,
9 execute, and transmit the Software, and to prepare derivative works of the
10 Software, and to permit third-parties to whom the Software is furnished to
11 do so, all subject to the following:
12 
13 The copyright notices in the Software and this entire statement, including
14 the above license grant, this restriction and the following disclaimer,
15 must be included in all copies of the Software, in whole or in part, and
16 all derivative works of the Software, unless such copies or derivative
17 works are solely in the form of machine-executable object code generated by
18 a source language processor.
19 
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 DEALINGS IN THE SOFTWARE.
27 */
28 
29 /**
30  * Complex numbers
31  *
32  * Copyright: Timur Gafarov 2013-2021.
33  * License: $(LINK2 boost.org/LICENSE_1_0.txt, Boost License 1.0).
34  * Authors: Timur Gafarov
35  */
36 module dlib.math.complex;
37 
38 import std.math;
39 import std.range;
40 import std.format;
41 
42 /// Complex number representation
43 struct Complex(T)
44 {
45     T re;
46     T im;
47 
48     this(T r, T i)
49     {
50         re = r;
51         im = i;
52     }
53 
54     this(T r)
55     {
56         re = r;
57         im = 0.0;
58     }
59 
60     Complex!(T) opUnary(string op) () if (op == "-")
61     {
62         return Complex!(T)(re, -im);
63     }
64 
65     Complex!(T) opBinary(string op)(Complex!(T) c) if (op == "+")
66     {
67         return Complex!(T)(re + c.re, im + c.im);
68     }
69 
70     Complex!(T) opBinary(string op)(Complex!(T) c) if (op == "-")
71     {
72         return Complex!(T)(re - c.re, im - c.im);
73     }
74 
75     Complex!(T) opBinary(string op)(Complex!(T) c) if (op == "*")
76     {
77         return Complex!(T)(
78             re * c.re - im * c.im,
79             re * c.im + im * c.re);
80     }
81 
82     Complex!(T) opBinary(string op)(Complex!(T) c) if (op == "/")
83     {
84         T denominator = c.re * c.re + c.im * c.im;
85         return Complex!(T)(
86             (re * c.re + im * c.im) / denominator,
87             (im * c.re - re * c.im) / denominator);
88     }
89 
90     Complex!(T) opOpAssign(string op)(Complex!(T) c) if (op == "+")
91     {
92         re += c.re;
93         im += c.im;
94         return this;
95     }
96 
97     Complex!(T) opOpAssign(string op)(Complex!(T) c) if (op == "-")
98     {
99         re -= c.re;
100         im -= c.im;
101         return this;
102     }
103 
104     Complex!(T) opOpAssign(string op)(Complex!(T) c) if (op == "*")
105     {
106         T temp = re;
107         re = re * c.re - im * c.im;
108         im = im * c.re + temp * c.im;
109         return this;
110     }
111 
112     Complex!(T) opOpAssign(string op)(Complex!(T) c) if (op == "/")
113     {
114         T denominator = c.re * c.re + c.im * c.im;
115         T temp = re;
116         re = (re * c.re + im * c.im) / denominator;
117         im = (im * c.re - temp * c.im) / denominator;
118         return this;
119     }
120 
121     Complex!(T) opBinary(string op)(T scalar) if (op == "+")
122     {
123         return Complex!(T)(re + scalar, im + scalar);
124     }
125 
126     Complex!(T) opBinary(string op)(T scalar) if (op == "-")
127     {
128         return Complex!(T)(re + scalar, im + scalar);
129     }
130 
131     Complex!(T) opBinary(string op)(T scalar) if (op == "*")
132     {
133         return Complex!(T)(re * scalar, im * scalar);
134     }
135 
136     Complex!(T) opBinary(string op)(T scalar) if (op == "/")
137     {
138         return Complex!(T)(re / scalar, im / scalar);
139     }
140 
141     Complex!(T) reciprocal()
142     {
143         T scale = re * re + im * im;
144         return Complex!(T)(re / scale, -im / scale);
145     }
146 
147     T magnitude()
148     {
149         return sqrt(re * re + im * im);
150     }
151 
152     T norm()
153     {
154         return (re * re + im * im);
155     }
156 
157     string toString()
158     {
159         auto writer = appender!string();
160         formattedWrite(writer, "%s + %si", re, im);
161         return writer.data;
162     }
163 }
164 
165 /// Complex abs
166 T abs(T)(Complex!T x)
167 {
168     return sqrt(x.re * x.re + x.im * x.im);
169 }
170 
171 /// Complex atan2
172 T atan2(T)(Complex!T x)
173 {
174     return atan2(x.im, x.re);
175 }
176 
177 /// Complex pow
178 Complex!T pow(T)(Complex!T x, Complex!T n)
179 {
180     T r = abs(x);
181     T t = arg(x);
182     T c = n.re;
183     T d = n.im;
184 
185     Complex!T res;
186     res.re = std.math.pow(r, c) * std.math.exp(-d*t) * cos(c*t + d*log(r));
187     res.im = std.math.pow(r, c) * std.math.exp(-d*t) * sin(c*t + d*log(r));
188 
189     return res;
190 }
191 
192 /// Complex exp
193 Complex!T exp(T)(Complex!T s)
194 {
195     return Complex!T(
196         std.math.exp(s.re) * cos(s.im),
197         std.math.exp(s.re) * sin(s.im));
198 }
199 
200 /**
201  * Riemann zeta function:
202  * ζ(s) = 1/1^s + 1/2^s + 1/3^s + ...
203  */
204 Complex!T zeta(T)(Complex!T s)
205 {
206     return Complex!T(1.0) +
207         (s + Complex!T(3.0)) / (s - Complex!T(1.0)) *
208         Complex!T(1.0) / pow(Complex!T(2.0), s + Complex!T(1.0));
209 }
210 
211 /// Alias for single precision Complex specialization
212 alias Complexf = Complex!float;