1 /*
2 Copyright (c) 2013-2021 Timur Gafarov
3 
4 Boost Software License - Version 1.0 - August 17th, 2003
5 
6 Permission is hereby granted, free of charge, to any person or organization
7 obtaining a copy of the software and accompanying documentation covered by
8 this license (the "Software") to use, reproduce, display, distribute,
9 execute, and transmit the Software, and to prepare derivative works of the
10 Software, and to permit third-parties to whom the Software is furnished to
11 do so, all subject to the following:
12 
13 The copyright notices in the Software and this entire statement, including
14 the above license grant, this restriction and the following disclaimer,
15 must be included in all copies of the Software, in whole or in part, and
16 all derivative works of the Software, unless such copies or derivative
17 works are solely in the form of machine-executable object code generated by
18 a source language processor.
19 
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 DEALINGS IN THE SOFTWARE.
27 */
28 
29 /**
30  * Linear equation system solvers
31  *
32  * Description:
33  * A system is given in matrix form: 
34  * ---
35  * Ax = b
36  * ---
37  * For example:
38  * ---
39  * x + 3y - 2z = 5
40  * 3x + 5y + 6z = 7
41  * 2x + 4y + 3z = 8 
42  * ---
43  * For this system, A (coefficient matrix) will be
44  * ---
45  * [1, 3, -2]
46  * [3, 5,  6]
47  * [2, 4,  3]
48  * ---
49  * And b (right side vector) will be 
50  * ---
51  * [5, 7, 8]
52  * ---
53  * x is a vector of unknowns:
54  * ---
55  * [x, y, z]
56  * ---
57  *
58  * Copyright: Timur Gafarov 2013-2021.
59  * License: $(LINK2 boost.org/LICENSE_1_0.txt, Boost License 1.0).
60  * Authors: Timur Gafarov
61  */
62 module dlib.math.linsolve;
63 
64 import std.math;
65 import dlib.math.matrix;
66 import dlib.math.vector;
67 import dlib.math.decomposition;
68 
69 // TODO: use arrays instead of Matrix structs to support big systems stored in heap
70 
71 /// Solve Ax = b directly using LUP decomposition
72 void solve(T, size_t N)(
73       Matrix!(T,N) a,
74   ref Vector!(T,N) x,
75       Vector!(T,N) b)
76 {
77     Matrix!(T,N) L, U, P;
78     decomposeLUP(a, L, U, P);
79     solveLU(L, U, x, b * P);
80 }
81 
82 ///
83 unittest
84 {
85     bool isConsiderZeroTolerant(T) (T f) nothrow
86     {
87         return (abs(f) < 0.0001f);
88     }
89     
90     Matrix3f a = matrixf(
91         1, 3, -2,
92         3, 5,  6,
93         2, 4,  3
94     );
95     Vector3f b = Vector3f(5, 7, 8);
96     Vector3f x = Vector3f(0, 0, 0);
97     
98     solve(a, x, b);
99     
100     assert(isConsiderZeroTolerant(-15 - x[0]));
101     assert(isConsiderZeroTolerant(8 - x[1]));
102     assert(isConsiderZeroTolerant(2 - x[2]));
103 }
104 
105 /// Solve LUx = b directly
106 void solveLU(T, size_t N)(
107     Matrix!(T,N) L,
108     Matrix!(T,N) U,
109 ref Vector!(T,N) x,
110     Vector!(T,N) b)
111 {
112     int i = 0;
113     int j = 0;
114     Vector!(T,N) y;
115 
116     // Forward solve Ly = b
117     for (i = 0; i < N; i++)
118     {
119         y[i] = b[i];
120         for (j = 0; j < i; j++)
121             y[i] -= L[i, j] * y[j];
122         y[i] /= L[i, i];
123     }
124 
125     // Backward solve Ux = y
126     for (i = N - 1; i >= 0; i--)
127     {
128         x[i] = y[i];
129         for (j = i + 1; j < N; j++)
130             x[i] -= U[i, j] * x[j];
131         x[i] /= U[i, i];
132     }
133 }
134 
135 /// Solve Ax = b iteratively using Gauss-Seidel method (implementation is bugged)
136 /*
137 void solveGS(T, size_t N)(
138       Matrix!(T,N) a,
139   ref Vector!(T,N) x,
140       Vector!(T,N) b,
141       uint iterations = 10)
142 {
143     T delta;
144 
145     for (int k = 0; k < iterations; ++k)
146     {
147         for (int i = 0; i < N; ++i)
148         {
149             delta = 0.0;
150 
151             for (int j = 0; j < i; ++j)
152                 delta += a[j, i] * x[j];
153 
154             for (int j = i + 1; j < N; ++j)
155                 delta += a[j, i] * x[j];
156 
157             delta = (b[i] - delta) / a[i, i];
158             x[i] = delta;
159         }
160     }
161 }
162 */