1 /*
2 Copyright (c) 2016-2021 Timur Gafarov
3 
4 Boost Software License - Version 1.0 - August 17th, 2003
5 
6 Permission is hereby granted, free of charge, to any person or organization
7 obtaining a copy of the software and accompanying documentation covered by
8 this license (the "Software") to use, reproduce, display, distribute,
9 execute, and transmit the Software, and to prepare derivative works of the
10 Software, and to permit third-parties to whom the Software is furnished to
11 do so, all subject to the following:
12 
13 The copyright notices in the Software and this entire statement, including
14 the above license grant, this restriction and the following disclaimer,
15 must be included in all copies of the Software, in whole or in part, and
16 all derivative works of the Software, unless such copies or derivative
17 works are solely in the form of machine-executable object code generated by
18 a source language processor.
19 
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 DEALINGS IN THE SOFTWARE.
27 */
28 
29 /**
30  * Simplest waveform synthesizers
31  *
32  * Copyright: Timur Gafarov 2016-2021.
33  * License: $(LINK2 boost.org/LICENSE_1_0.txt, Boost License 1.0).
34  * Authors: Timur Gafarov
35  */
36 module dlib.audio.synth;
37 
38 import std.math;
39 import std.random;
40 import dlib.audio.sound;
41 
42 /**
43  * An interface for a synthesizer that maps sample position to -1..1 sample value
44  */
45 interface Synth
46 {
47     /**
48      * Evaluate a sample.
49      * 
50      * Params:
51      *   sound = a sound object which parameters are used to discretize a sample
52      *   position = sample index
53      *   frequency = signal frequency in Hz
54      */
55     float eval(Sound sound, ulong position, float frequency);
56 }
57 
58 /**
59  * Sine wave synthesizer
60  */
61 class SineWaveSynth: Synth
62 {
63     /**
64      * Evaluate a sine wave sample.
65      * 
66      * Params:
67      *   sound = a sound object which parameters are used to discretize a sample
68      *   position = sample index
69      *   frequency = signal frequency in Hz
70      */
71     float eval(Sound sound, ulong position, float frequency)
72     {
73         double samplePeriod = 1.0 / cast(double)sound.sampleRate;
74         double time = position * samplePeriod;
75         return sin(2.0 * PI * frequency * time);
76     }
77 }
78 
79 /**
80  * Square wave synthesizer
81  */
82 class SquareWaveSynth: Synth
83 {
84     /**
85      * Evaluate square wave sample.
86      * 
87      * Params:
88      *   sound = a sound object which parameters are used to discretize a sample
89      *   position = sample index
90      *   frequency = signal frequency in Hz
91      */
92     float eval(Sound sound, ulong position, float frequency)
93     {
94         double samplePeriod = 1.0 / cast(double)sound.sampleRate;
95         double phase = position * samplePeriod * frequency;
96         double s = 2.0 * floor(phase) - floor(2.0 * phase) + 1.0;
97         return s * 2.0 - 1.0;
98     }
99 }
100 
101 /**
102  * Sawtooth wave synthesizer
103  */
104 class SawtoothWaveSynth: Synth
105 {
106     /**
107      * Evaluate sawtooth wave sample.
108      * 
109      * Params:
110      *   sound = a sound object which parameters are used to discretize a sample
111      *   position = sample index
112      *   frequency = signal frequency in Hz
113      */
114     float eval(Sound sound, ulong position, float frequency)
115     {
116         double samplePeriod = 1.0 / cast(double)sound.sampleRate;
117         double phase = position * samplePeriod * frequency;
118         double s = phase - floor(phase);
119         return s * 2.0 - 1.0;
120     }
121 }
122 
123 /**
124  * Triangle wave synthesizer
125  */
126 class TriangleWaveSynth: Synth
127 {
128     /**
129      * Evaluate triangle wave sample.
130      * 
131      * Params:
132      *   sound = a sound object which parameters are used to discretize a sample
133      *   position = sample index
134      *   frequency = signal frequency in Hz
135      */
136     float eval(Sound sound, ulong position, float frequency)
137     {
138         double samplePeriod = 1.0 / cast(double)sound.sampleRate;
139         double phase = position * samplePeriod * frequency;
140         double s = abs(1.0 - fmod(phase, 2.0));
141         return s * 2.0 - 1.0;
142     }
143 }
144 
145 /**
146  * Frequency modulation synthesizer
147  */
148 class FMSynth: Synth
149 {
150     Synth carrier;
151     Synth modulator;
152     float frequencyRatio;
153 
154     /**
155      * Constructor.
156      * 
157      * Params:
158      *   carrier = carrier waveform
159      *   modulator = modulator waveform
160      *   frequencyRatio = frequency multiplier for modulator
161      */
162     this(Synth carrier, Synth modulator, float frequencyRatio)
163     {
164         this.carrier = carrier;
165         this.modulator = modulator;
166         this.frequencyRatio = frequencyRatio;
167     }
168 
169     /**
170      * Evaluate FM sample.
171      * 
172      * Params:
173      *   sound = a sound object which parameters are used to discretize a sample
174      *   position = sample index
175      *   frequency = signal frequency in Hz
176      */
177     float eval(Sound sound, ulong position, float frequency)
178     {
179         float m = modulator.eval(sound, position, frequency * frequencyRatio);
180         return carrier.eval(sound, position, frequency + m);
181     }
182 }
183 
184 // TODO: EnvelopeSynth
185 
186 /**
187  * Fill a given portion of a sound with a signal from specified synthesizer.
188  * Params:
189  *   sound = a sound object to write to
190  *   channel = channel to fill (beginning from 0)
191  *   synth = synthesizer object
192  *   freq = synthesizer frequency
193  *   startTime = start time of a signal in seconds
194  *   duration = duration of a signal in seconds
195  *   amplitude = volume coefficient of a signal
196  */
197 void fillSynth(Sound sound, uint channel, Synth synth, float freq, double startTime, double duration, float amplitude)
198 {
199     ulong startSample = cast(ulong)(startTime * sound.sampleRate);
200     ulong endSample = startSample + cast(ulong)(duration * sound.sampleRate);
201     if (endSample >= sound.size)
202         endSample = sound.size - 1;
203 
204     foreach(i; startSample..endSample)
205     {
206         sound[channel, i] = synth.eval(sound, i - startSample, freq) * amplitude;
207     }
208 }
209 
210 /**
211  * Additively mix a signal from specified synthesizer to a given portion of a sound.
212  *   sound = a sound object to write to
213  *   channel = channel to fill (beginning from 0)
214  *   synth = synthesizer object
215  *   freq = synthesizer frequency
216  *   startTime = start time of a signal in seconds
217  *   duration = duration of a signal in seconds
218  *   amplitude = volume coefficient of a signal
219  */
220 void mixSynth(Sound sound, uint channel, Synth synth, float freq, double startTime, double duration, float amplitude)
221 {
222     ulong startSample = cast(ulong)(startTime * sound.sampleRate);
223     ulong endSample = startSample + cast(ulong)(duration * sound.sampleRate);
224     if (endSample >= sound.size)
225         endSample = sound.size - 1;
226 
227     foreach(i; startSample..endSample)
228     {
229         float src = sound[channel, i];
230         sound[channel, i] = src + synth.eval(sound, i - startSample, freq) * amplitude;
231     }
232 }
233 
234 /**
235  * Generate random audio signal.
236  *   snd = sound
237  *   ch = channel to fill (beginning from 0)
238  */
239 void whiteNoise(Sound snd, uint ch)
240 {
241     foreach(i; 0..snd.size)
242     {
243         snd[ch, i] = uniform(-1.0f, 1.0f);
244     }
245 }
246 
247 /**
248  * Fill the sound with simple sine wave tone.
249  *   snd = sound
250  *   ch = channel to fill (beginning from 0)
251  *   freq = frequency in Hz. For example, a dial tone in Europe is usually 425 Hz
252  */
253 void sineWave(Sound snd, uint ch, float freq)
254 {
255     float samplePeriod = 1.0f / cast(float)snd.sampleRate;
256     foreach(i; 0..snd.size)
257     {
258         snd[ch, i] = sin(samplePeriod * i * freq * 2.0f * PI);
259     }
260 }