1 /*
2 Copyright (c) 2015-2021 Timur Gafarov
3 
4 Boost Software License - Version 1.0 - August 17th, 2003
5 
6 Permission is hereby granted, free of charge, to any person or organization
7 obtaining a copy of the software and accompanying documentation covered by
8 this license (the "Software") to use, reproduce, display, distribute,
9 execute, and transmit the Software, and to prepare derivative works of the
10 Software, and to permit third-parties to whom the Software is furnished to
11 do so, all subject to the following:
12 
13 The copyright notices in the Software and this entire statement, including
14 the above license grant, this restriction and the following disclaimer,
15 must be included in all copies of the Software, in whole or in part, and
16 all derivative works of the Software, unless such copies or derivative
17 works are solely in the form of machine-executable object code generated by
18 a source language processor.
19 
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 DEALINGS IN THE SOFTWARE.
27 */
28 
29 /**
30  * Dual quaternions
31  *
32  * Copyright: Timur Gafarov 2015-2021.
33  * License: $(LINK2 boost.org/LICENSE_1_0.txt, Boost License 1.0).
34  * Authors: Timur Gafarov
35  */
36 module dlib.math.dualquaternion;
37 
38 import std.math;
39 import std.range;
40 import std.format;
41 
42 import dlib.math.vector;
43 import dlib.math.matrix;
44 import dlib.math.quaternion;
45 import dlib.math.transformation;
46 import dlib.math.dual;
47 
48 /**
49  * Dual quaternion representation.
50  * Dual quaternion is a generalization of quaternion to dual numbers field.
51  * Similar to the way that simple quaternion represents rotation in 3D space,
52  * dual quaternion represents rigid 3D transformation (translation + rotation),
53  * so it can be used in kinematics.
54  */
55 struct DualQuaternion(T)
56 {
57     this(Quaternion!(T) q1, Quaternion!(T) q2)
58     {
59         this.q1 = q1;
60         this.q2 = q2;
61     }
62 
63     this(Quaternion!(T) r, Vector!(T,3) t)
64     {
65         this.q1 = r;
66         this.q2 = Quaternion!(T)(t * 0.5, 0.0) * r;
67     }
68 
69     this(Quaternion!(T) r)
70     {
71         this.q1 = r;
72         this.q2 = Quaternion!(T).identity * r;
73     }
74 
75     this(Vector!(T,3) t)
76     {
77         this.q1 = Quaternion!(T).identity;
78         this.q2 = Quaternion!(T)(t * 0.5, 0.0);
79     }
80 
81     Vector!(T,3) transform(Vector!(T,3) v)
82     {
83         auto vq = DualQuaternion!(T)(
84             Quaternion!(T).identity,
85             Quaternion!(T)(v.x, v.y, v.z, 0.0));
86         auto q = this * vq * this.fullConjugate;
87         return q.q2.xyz;
88     }
89 
90     Vector!(T,3) rotate(Vector!(T,3) v)
91     {
92         return q1.rotate(v);
93     }
94 
95     DualQuaternion!(T) conjugate()
96     {
97         return DualQuaternion!(T)(q1.conj, q2.conj);
98     }
99 
100     DualQuaternion!(T) dualConjugate()
101     {
102         return DualQuaternion!(T)(q1, q2 * -1.0);
103     }
104 
105     DualQuaternion!(T) fullConjugate()
106     {
107         return DualQuaternion!(T)(q1.conj, q2.conj * -1.0);
108     }
109 
110     DualQuaternion!(T) opBinary(string op)(DualQuaternion!(T) d) if (op == "*")
111     {
112         return DualQuaternion!(T)(q1 * d.q1, q1 * d.q2 + q2 * d.q1);
113     }
114 
115     DualQuaternion!(T) opBinary(string op)(DualQuaternion!(T) d) if (op == "+")
116     {
117         return DualQuaternion!(T)(q1 + d.q1, q2 + d.q2);
118     }
119 
120     DualQuaternion!(T) opBinary(string op)(DualQuaternion!(T) d) if (op == "-")
121     {
122         return DualQuaternion!(T)(q1 - d.q1, q2 - d.q2);
123     }
124 
125    /**
126     * Rotation part
127     */
128     Quaternion!(T) rotation()
129     {
130         return q1;
131     }
132 
133    /**
134     * Translation part
135     */
136     Vector!(T,3) translation()
137     {
138         return (2.0 * q2 * q1.conj).xyz;
139     }
140 
141    /**
142     * Convert to 4x4 matrix
143     */
144     Matrix!(T,4) toMatrix4x4()
145     {
146         // TODO: Can this be done without matrix multiplication?
147         return translationMatrix(translation) * rotation.toMatrix4x4;
148     }
149 
150    /**
151     * Dual quaternion norm
152     */
153     Dual!(T) norm()
154     {
155         auto qq = this * this.conjugate;
156         return Dual!(T)(qq.q1.lengthsqr, qq.q2.lengthsqr).sqrt;
157     }
158 
159    /**
160     * Set norm to 1
161     */
162     DualQuaternion!(T) normalized()
163     {
164         Dual!(T) n = norm;
165         return DualQuaternion!(T)(q1 / n.re, q2 / n.re);
166     }
167 
168    /**
169     * Convert to string
170     */
171     string toString()
172     {
173         auto writer = appender!string();
174         formattedWrite(writer, "[%s, %s]", q1.arrayof, q2.arrayof);
175         return writer.data;
176     }
177 
178    /**
179     * Elements union
180     */
181     union
182     {
183         struct
184         {
185             /// Rotation part
186             Quaternion!(T) q1;
187             
188             /// Translation part
189             Quaternion!(T) q2;
190         }
191 
192         /// Elements as static array
193         T[8] arrayof;
194     }
195 }
196 
197 /// Alias for single precision DualQuaternion specialization
198 alias DualQuaternionf = DualQuaternion!(float);
199 
200 /// Alias for double precision DualQuaternion specialization
201 alias DualQuaterniond = DualQuaternion!(double);